
ITERATORS AND GENERATORS
CS 61A DISCUSSION 6

ITERATORS ARE OBJECTS THAT SWEEP OVER A
COLLECTION OF ITEMS IN A SPECIFIC ORDER.
THIS HAPPENS VIA REPEATED APPLICATION OF
THE next METHOD, WHICH IS DEFINED ON ALL
ITERATORS.

CS 61A Guru

THE BIG PICTURE FOR TODAY

ITERATORS
TOPIC #1

—-

ITERATORS

Iterators step through a collection, item by item, via next
Iterables “are” the collection, and provide iterators via iter

▸ If you have an iterable, you can get an iterator over it by
calling iter. Then you can observe all of its elements by
repeatedly calling next on the iterator.

▸ Be warned: iterators are single-use only! (Once an iterator
has gone through all the elements of a finite-length iterable,
it’s done. Calling next on it will give StopIteration errors
forever.)

—-

IN SUMMARY

iter(iterable) —> iterator
next(iterator) —> value, or a StopIteration error

—-

BUILTIN FUNCTIONALITY

Lots of builtin functions take or produce iterators!

▸ map(function, iterable)
▸ Returns an iterator over mapped elements in the iterable.

▸ filter(function, iterable)
▸ Returns an iterator over filtered elements from the iterable.

▸ zip(*iterables)
▸ Returns an iterator over aggregations of elements from

each of the iterables.

—-

EXAMPLE: CREATING AN ITERABLE

To create an iterable, you could write a class that implements
__iter__ as a generator function.

—-

FOR-LOOPS: EXPOSED

Behind the scenes, for-loops really just create iterators using iter
and then call next a bunch of times.

for x in <expr>:
 <do stuff>
— is equivalent to —
iterator = iter(<expr>)
try:
 while True:
 n = next(iterator)
 <do stuff>
except StopIteration:
 pass

—-

EXAMPLE: IMPLEMENTING THE LIST CONSTRUCTOR

Let’s implement the list function. Here we have the function
specification:

—-

EXAMPLE: IMPLEMENTING THE LIST CONSTRUCTOR

Let’s implement the list function. Here we have the function
specification:

GENERATORS
(WHICH ARE ALSO ITERATORS, SO THIS IS KIND OF STILL TOPIC #1)

TOPIC #2

—-

WTF IS A GENERATOR?

Generator functions are functions containing yield statements.
‣ These functions return generators when called.

Generators are iterators obtained by calling a generator function.
‣ Every time you call next on a generator, it goes through its

associated function body until it hits a yield – at which point it
“yields” the specified value. The state of the function w.r.t. this
generator is saved, so whenever next is called again on the
generator, execution of the function body will continue from
where it left off.

(To create a fresh iterator, just call the generator function again.)

—-

EXAMPLE: A GENERATOR OVER THE NATURAL NUMBERS

—-

EXERCISE: GENERATING UNORDERED SUBSETS OF A LIST

Write a generator function that goes through all subsets of the positive integers
from 1 to n. Each call to this generator’s next method will return a list of subsets
of the set [1, 2, …, n], where n is the number of times next was previously called.

def generate_subsets():
 “””
 >>> subsets = generate_subsets()
 >>> for _ in range(3):
 ... print(next(subsets))
 ...
 [[]]
 [[], [1]]
 [[], [1], [2], [1, 2]]
 “””
 # YOUR-CODE-HERE

—-

EXERCISE: GENERATING UNORDERED SUBSETS OF A LIST

def generate_subsets():
 # YOUR-CODE-HERE

Thought process:
‣ Uh…
‣ Okay, well it’s a generator function so we’re going to have to yield stuff
‣ Looking at the doctests, it seems as if we always want the positive integers to

be in order. We’re just splitting them up
‣ [[]]
‣ [[], [1]]
‣ [[], [1], [2], [1, 2]]

‣ What do you notice? Each successive yield is just everything from before, and
also everything from before with the latest value of n tacked onto the end

—-

EXERCISE: GENERATING UNORDERED SUBSETS OF A LIST

def generate_subsets():
 # YOUR-CODE-HERE

In other words,
‣ n = 0:
 [[]]
‣ n = 1:
 [[], [1]], aka [[] and [] + [1]]
‣ n = 2:
 [[], [1], [2], [1, 2]], aka [[], [1] and [] + [2], [1] + [2]]
‣ n = 3:
 [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]], aka
 [... and [] + [3], [1] + [3], [2] + [3], [1, 2] + [3]]

—-

EXERCISE: GENERATING UNORDERED SUBSETS OF A LIST

def generate_subsets():
 n, subsets = 1, [[]]
 while True:
 yield subsets
 subsets += [s + [n] for s in subsets]
 n += 1

